

institute for art, science and technology

Why we need a microscope

- Morphological identification
- Check purity of a culture

Industry Standard

Design Constrains

Microscope slide

Biohack Academy Designs

Webcam Microscope

Pixel Based Magnification test

- Take a picture of your screen up close
- Count the number of pixels in the frame
- Calculate the magnification

Compound microscope

Microscope formulas

Magnification Objective

- Focal length of objective
 - fa = fb = 35 mm
 - d = 3.2 mm
 - fab = 18.3 mm
- Objective-specimen distance
 - q = 167.4 mm
 - p = 20.6
- Magnification power objective
 - Mob = 167.4 / 20.6
 - Mob = 8.1

$$f_{ab} = \frac{f_a \times f_b}{f_a + f_b - d}$$

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

$$M_{ob} = \frac{p}{q}$$

Magnification Eyepiece

- Focal length eyepiece
 - fa = fb = 35 mm
 - d = 24.5 mm
 - fep = 26,92 mm
- Mep = 250 / 26.92
- Mep = 9.3

$$f_{ab} = \frac{f_a \times f_b}{f_a + f_b - d}$$

$$M_{ep} = \frac{250}{f_{ab}}$$

Magnification Microscope

- $Mmic = 8.1 \times 9.3$
- Mmic = 75.5

$$M_{mic} = M_{ob} \times M_e$$

